Superposition operators between the Bloch space and Bergman spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators from Bergman-type spaces into Bloch spaces

Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

The Bergman Spaces, the Bloch Space, and Gleason's Problem

Suppose / is a holomorphic function on the open unit ball Bn of Cn. For 1 < p < oo and to > 0 an integer, we show that / is in Lp(Bn,dV) (with dV the volume measure) iff all the functions dmf/dza (\a\ = to) are in Lp(Bn,dV). We also prove that / is in the Bloch space of Bn iff all the functions dmf/dza (\a\ = m) are bounded on Bn. The corresponding result for the little Bloch space of Bn is est...

متن کامل

Riemann-Stieltjes operators between Bergman-type spaces and α-Bloch spaces

We study the following integral operators: J g f (z)= z 0 f (ξ)g (ξ)dξ; I g f (z)= z 0 f (ξ)g(ξ)dξ, where g is an analytic function on the open unit disk in the complex plane. The bounded-ness and compactness of J g , I g between the Bergman-type spaces and the α-Bloch spaces are investigated.

متن کامل

Composition Operators between Bergman and Hardy Spaces

We study composition operators between weighted Bergman spaces. Certain growth conditions for generalized Nevanlinna counting functions of the inducing map are shown to be necessary and sufficient for such operators to be bounded or compact. Particular choices for the weights yield results on composition operators between the classical unweighted Bergman and Hardy spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 2004

ISSN: 0004-2080

DOI: 10.1007/bf02385476